FASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopy.
نویسندگان
چکیده
In this work we present a fast and automated algorithm for estimating the contrast transfer function (CTF) of a transmission electron microscope. The approach is very suitable for High Throughput work because: (a) it does not require any initial defocus estimation, (b) it is almost an order of magnitude faster than existing approaches, (c) it opens the way to well-defined extensions to the estimation of higher order aberrations, at the same time that provides defocus and astigmatism estimations comparable in accuracy to well established methods, such as Xmipp and CTFFIND3 approaches. The new algorithm is based on obtaining the wrapped modulating phase of the power spectra density pattern by the use of a quadrature filter. This phase is further unwrapped in order to obtain the continuous and smooth absolute phase map; then a Zernike polynomial fitting is performed and the defocus and astigmatism parameters are determined. While the method does not require an initial estimation of the defocus parameters or any non-linear optimization procedure, these approaches can be used if further refinement is desired. Results of the CTF estimation method are presented for standard negative stained images, cryo-electron microscopy images in the absence of carbon support, as well as micrographs with only ice. Additionally, we have also tested the proposed method with micrographs acquired from tilted and untilted samples, obtaining good results. The algorithm is freely available as a part of the Xmipp package [http://xmipp.cnb.csic.es].
منابع مشابه
Precise and unbiased estimation of astigmatism and defocus in transmission electron microscopy
Defocus and twofold astigmatism are the key parameters governing the contrast transfer function (CTF) in transmission electron microscopy (TEM) of weak phase objects. We present a new algorithm to estimate these aberrations and the associated uncertainties. Tests show very good agreement between simulated and estimated defocus and astigmatism. We evaluate the reproducibility of the algorithm on...
متن کاملAn auto-tuning method for focusing and astigmatism correction in HAADF-STEM, based on the image contrast transfer function.
An auto-tuning method for high-angle annular detector dark field scanning transmission electron microscopy (HAADF-STEM) is proposed which corrects the defocus to the optimum Scherzer focus and compensates the astigmatism. Because the method is based on the image contrast transfer function formulated for the HAADF-STEM, the defocus and the astigmatism are accurately measured from input of two di...
متن کاملAutofocus and two-fold astigmatism correction in HAADF-STEM
A new simultaneous autofocus and two-fold astigmatism correction method is proposed for High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM). The method makes use of a modification of an image variance, which has already been used before as an image quality measure for different types of microscopy. In this paper we describe numerical simulations based on a class...
متن کاملDerivative-free optimization for autofocus and astigmatism correction in electron microscopy
A simultaneous autofocus and twofold astigmatism correction method for electron microscopy is described. The method uses derivative-free optimization in order to find a global optimum of an image variance, which is an image quality measure. The Nelder-Mead simplex method and the Powell interpolation-based trust-region method are discussed and compared for an application running on a scanning tr...
متن کاملCTFFIND4: Fast and accurate defocus estimation from electron micrographs.
CTFFIND is a widely-used program for the estimation of objective lens defocus parameters from transmission electron micrographs. Defocus parameters are estimated by fitting a model of the microscope's contrast transfer function (CTF) to an image's amplitude spectrum. Here we describe modifications to the algorithm which make it significantly faster and more suitable for use with images collecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of structural biology
دوره 181 2 شماره
صفحات -
تاریخ انتشار 2013